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Urn models are used to construct polynomials which share many of the shape
preserving characteristics of the Bernstein polynomials. Some of these urn models
generate splines and one special model is shown to generate the uniform B-splines.
The approximation schemes engendered by these polynomials and polynomial
splines are studied and their common properties are traced back to their
probabilistic origins. © 1988 Academic Press, Inc.

1. INTRODUCTION

One of the simplest and most elegant ways to prove the Weierstrass
Approximation Theorem is to show that the Bernstein approximations of a
continuous function actually converge to the original function [3]. Unfor­
tunately the convergence of the Bernstein polynomials is sluggish and this
slow convergence often precludes their use in practical applications.
Nevertheless the Bernstein approximations not only converge to the
original function, but they also approximate, in a general way, its shape
[3, 11]. It is due to this ability to approximate shape rather than to their
convergence properties that the Bernstein polynomials have recently been
applied quite successfully in the field of computer aided geometric
design [5]. Now the binomial distribution generates the Bernstein
polynomials and many of the most important geometric properties of the
Bernstein approximations can be derived directly from their probabilistic
interpretation. Perhaps then if we wish to generalize the shape
approximating characteristics of the Bernstein polynomials, we should look
to ways to extend the probabilistic properties of the binomial distribution.

A simple classical way to generate discrete probability distributions is to
construct urn models. Urn models extend the probabilistic properties of the
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binomial distribution in a very natural way and therefore we would expect
that the corresponding approximation schemes would also capture many of
the geometric properties of the original function. This is indeed the case.
Moreover there is a big bonus. Many urn models generate polynomial
splines and one particular urn model actually generates B-splines.
Therefore it is possible to use discrete urn models to study continuous
polynomial splines. These stochastic models provide fresh insight into the
discovery and proof of many algebraic results. For example, we can derive
many well known properties of B-splines, including the Cox-de Boor recur­
sion formula, by simple counting arguments; thus there is no need to resort
to complicated divided difference techniques. It should not be too surpris­
ing that a generalization of the binomial distribution leads directly to
B-splines. Afterall, B-splines were invented to extend the approximating
characteristics of the Berstein polynomials and urn models were created to
extend the probabilistic properties of the binomial distribution. What is
remarkable is that simple discrete counting arguments can be used to
derive sophisticated analytic results.

This paper is divided into four main parts. In Section 2 urn models are
introduced and some of their basic properties-symmetry, recursion,
moments, laws of signs, limits, and derivatives-are derived. We go on in
Section 3 to develop approximation schemes based on these urn models.
The fundamental properties of these approximation techniques-convexity,
symmetry, recursion, uniqueness, variation dimunition, limits, and
derivatives-are traced back to the basic properties of the urn models
derived in Section 2. Sections 4 and 5 discuss splines. Section 4 deals with a
class of continuous polynomial splines which can be constructed from a
distinguished set of distributions introduced in Section 2. The properties of
these splines are studied and traced back to the distributions ·from which
they are derived. Section 5 discusses a particularly important special case of
the splines constructed in Section 4, namely the uniform B-splines.

We believe that the connection between urn models, approximations and
splines leads to a new unity which helps to simplify and generalize many
algebraic and geometric properties. We hope that this coupling of
probability theory and approximation theory will ultimately prove
beneficial to both disciplines and we expect that it will continue to be a
fertile area for many future investigations.

2. URN MODELS

We begin with a very simple, very general, urn model first introduced by
B. Friedman in [6].
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Friedman's Urn Model

Consider an urn initially containing w white balls and b black balls. One
ball at a time is drawn at random from the urn and its color is inspected. It
is then returned to the urn and a constant number C j of balls of the same
color and a constant number C2 of balls of the opposite color are added to
the urn.

We wish to study the discrete distributions generated by the probabilities
of selecting exactly K white balls in the first N trials. When C j = Cz = 0, this
probability distribution is simply the binomial distribution (sampling with
replacement); when Cj #- 0, C2 = 0, this urn model reduces to the classical
Polya-Eggenberger urn model [4]; and when Cj = 0, Cz = W + b, then
this urn model generates the normalized uniform B-spline basis functions
(see Section 5). Although, in general, there are 4 independent urn
parameters-w, b, Cj, C2-we shall show below that the probability of
selecting exactly K white balls in the first N trials always depends on only
the following 3 parameters:

t = w/(w + b) = probability of selecting a white ball on the first trial;

a j = cd(w+ b) = percentage of bans of the same color added to the
urn after the first trial;

az = C2/( w+ b) = percentage of balls of the opposite color added to the
urn after the first triaL

Now we shall be particularly interested in investigating what happens when
we hold a j, az fixed and anow t to very. Therefore we introduce the follow­
ing notation.

D'i.( t) = D'i.(a j, az , t) = probability of selecting exactly K white balls
in the first N trials given initial conditions
aj, a2' t;

DN(t)=DN(a j, a2, t) =probability distribution consisting of the
functions D~(t), ..., D%(t);

s'i.(t)=s'i.(aj,a2,t) =probability of selecting a white ball after
selecting exactly K white balls in the first N
trials;

f'i.(t) = f'i.(aj, a2 , t) = probability of selecting a black ball after
selecting exactly K white balls in the first N
trials;

SN( t) = SN(a j , a2, t) = a priori probability of selecting a white hall
on the Nth trial;

M;"(t)=M;"(aj,a2,t)=rth moment of the probability distribution
DN(t)

= L K"D'i.(t).
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2.1 Probability Distributions

For any fixed values of aj, a2' the functions D~(t), ..., DZ(t) form a
discrete probability distribution because they represent the probabilities of

PROPOSITION 2.1.1.

O~t~1.

PROPOSITION 2.1.2.

f%(t) +s%(t) = 1 f%(t), s%(t)~O,

N + 1 mutually exclusive events one of which must occur. Similarly f':(t),
s%(t) represent the probabilities of two mutually exclusive events one of
which must occur. Since by definition 0 ~ t = w/(w + b) ~ 1, we have the
following basic results.

2.2 Symmetry

There is symmetry in our urn model between white balls and black balls
because whatever action we take when we select a white ball we take a
symmetrical action when we select a black ball. Therefore if D%(t)
represents the probability of selecting exactly K white balls in the first N
trials, then by symmetry D%(1- t) must represent the probability of
selecting exactly K black balls in the first N trials. Similarly if s%(t) (f%(t))
represents the probability of selecting a white (black) ball after selecting
exactly K white balls in the first N trials, then by symmetry s%( 1 - t)
(f%(1- t)) must represent the probability of selecting a black (white) ball
after selecting exactly K black balls in the first N trials. These simple
observations lead directly to the following important results.

PROPOSITION 2.2.1. D%(t)=DZ_ K (I-t).

PROPOSITION 2.2.2. s%( t) = f~_ K( 1- t),

2.3 Some Explicit Formulas

It is easy to derive explicit formulas for the functions s%(t),f%(t). Indeed,
we have the following general results.

PROPOSITION 2.3.1.

N( t+Ka 1 +(N-K)a2s t) - ---,--~----,'---'"
K - 1+N(a1 +a2)

fN(t)= (l-t)+ (N-K)a 1 +Ka2.
K I+N(a 1 +a2)
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Proof Consider the contents of the urn after selecting exactly K white
balls in the first N trials. By definition

N() number of white balls in urn
s t = ---,-----,-----:--:-:-:-..,.:--:---

K total number of all balls in urn

w+KCl + (N - K) C2

w+b+N(c l +c2 ) .

Dividing numerator and denominator by w + b, we obtain

SN(t)= t+Ka l + (N -K) a2 •

K 1+N(a j +a2 )

A similar argument (or simply the fact that f %( t) + s%( t) = 1) shows that

f%(t)= (l-t)+(N-K)a j + Ka 2 •

1+N(a j +a2 )
Q.E.D.

In some special cases it is also possible to obtain explicit formulas for
D%(t). For example, if an urn initially contains only white (black) balls
then a white (black) ball must be selected on the first trial. This simple
observation leads to the following result.

PROPOSITION 2.3.2.

D~(l)=O

DZ(O) =0

N>O

N>O.

More generally, we have the following formulas for D~(t), DZ(t).

PROPOSITION 2.3.3.

Proof To select. exactly 0 white balls in the first N trials, we must select
a black ball on every trial. Therefore

N-l N-l (l-t+Kad
D~(t)= }!of~(t)=}!o(1+K[a

j
+a

2
])
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Similarly to select exactly N white balls in the first N trials, we must select
a white ball on every trial. Hence

Q.E.D.

When a2 = 0, we can calculate D%(t) explicitly for every K.

PROPOSITION 2.3.4. If a2 = 0, then

(~
t ... (t + [K - I] a1)( I - t) ... (I - t + [N - K - I] a1)

D%(t) =
K (l+ad···(I+[N-l]a1 ) .

Proof By Proposition 2.3.1 when a2 = 0, we have

L() t+Jals t =--~
J 1+ La1

Now there are (%) ways of selecting exactly K white balls in the first N
trials. To calculate the probability of anyone particular way, we must mul­
tiply together K success factors of type s;-(t) and N - K failure factors of
type f;-(t) where for each L either s;-(t) or f;-(t) must appear but not both.
Now J=O,I,oo.,K, L=O,I,oo.,N-l, and L-J=O,I,.oo,N-K-l.
Therefore, collecting all these factors, we obtain

(~
t .. ·(t+ [K-l)ad(l-t) .. ·(l-t+ [N-K-l] ad

D%(t)= .
K (l+ad .. ·(I+[N-l]a1 )

Q.E.D.

COROLLARY 2.3.5. If a 1 = a2 = 0, then

The case a2 = °is the classical Polya-Eggenberger urn model, and the
case a1 = a2 = °is, of course, just the binomial distribution. When a2 #- 0, it
is not so easy to derive facile explicit formulas for the functions D%(t). In
these cases we must resort to a simple recursion formula which we shall
derive in the following section.
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2.4 The Recursion Formula

The following simple recursion formula is fundamental to the
investigation of urn models.

PROPOSITION 2.4.1. DZ+1(t)=fZ(t)DZ(t)+SZ_I(t)D%_I(t).

Proof In order to select exactly K white balls in the first N + 1 trials,
we must select either exactly K or exactly K - 1 white balls in the first N
trials. Thus the probability of selecting exactly K white balls in the first
N+1 trials [DZ+1(t)] is equal to the sum of the probabilities of two
mutually exclusive events.

1. The probability of selecting exactly K white balls in the first N
trails [D%(t)] and then selecting a black ball on the N + 1st trial [fZ(t)].

2. The probability of selecting exactly K - 1 white balls in the first N
trials [DZ _ 1(t)] and then selecting a white baH on the N + 1st trial
[S%_l(t)].

Translating English to Algebra yields our result.

If a1 =a2 =O, then

fZ(t) = 1- t

SZ_I(t) = t

DZ+ l(t) = (1- t) DZ(t) + tDZ_ 1(t).

Q.E.D.

This recursion formula is, of course, just the sJandard recursion formula for
the Bernstein polynomials (binomial distribution).

If a1 ==0, a2 = 1, then

f N(t) = 1 - t + K
K 1+N

N t+N+I-K
SK_l(t)= 1+N

DN+1( )=(1-t+K) DN() (t+N+I-K) DN (t).
K t (1 + N) K t + (1 + N) K- 1

Now this recursion formula is actually just the Cox-de Boor recursion
formula for B-splines in its simplest form (see Section 5).

Since we have explicit formulas for the functions fZ(t), sZ(t)
(Proposition 2.3.1), and since by definition

DMt) = 1- t,

Dl(t)=t,
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we can use the recursion formula to calculate D%(t) for any values of K, N.
Moreover it follows from the recursion formula and induction on N that
D%(t) is a degree N polynomial in t which depends only on aj, az , t, K, N.
Thus we can state the following corollary.

COROLLARY 2.4.2. The functions D~(t), ..., DlfAt) are degree N
polynomials in t.

In the next section we shall show that the N + I polynomials
D~(t), ..., DZ(t) actually form a basis for all the degree N polynomials in t.

2.5 Expectation and Higher Order Moments

In this section we shall study the N + 1 moments M~(t), ..., MZ(t).
Explicit formulas for these moments when az = 0 are given in [13]. Here
we shall examine the general case. To begin with M~(t), notice that we can
restate Proposition 2.1.1 in the following manner.

PROPOSITION 2.5.1. M~(t) = 1.

The first moment, M~(t) = L%~ 1 KD%(t), is the classical expectation of
the distribution D N( t). Therefore we have the following general result.

PROPOSITION 2.5.2. Mf(t) =L%~ 1 SK(t).

Proof Simply observe that the expectation of several disjoint random
events is just the sum of the expectations of each individual event and the
expectation of a single random event is simply the probability of that event.
Therefore, in our case, the expected number of white balls selected in the
first N trials must be equal to the sum of the a priori probabilities of
selecting a white ball in each of the first N trials. Q.E.D.

COROLLARY 2.5.3. SN+l(t)=M~+l(t)-Mf(t).

Thus the problem of computing the moments Mf(t) is equivalent to the
problem of computing the a priori probabilities S K(t).

PROPOSITION 2.5.4. SN+l=LKS%(t)D%(t).

Proof The a priori probability of selecting a white ball on the N + 1st
trial is equal to the sum of the probabilities of all the possible, mutually
exclusive, ways of selecting a white ball on the N + 1st trial. But the only
possible ways in which we can select a white ball on the N + 1st trial are
first to select N balls some number K of which are white [D%(t)] and then
to select a white ball on the N + 1st trial [s%(t)]. Q.E.D.
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PROPOSITION 2.5.5.

S ()_t+Na2+(a1 -a2)Mn t )
N+l t - I+N(al+ a2) .

Proof By Proposition 2.5.4 and 2.3.1,

SN+ l(t) =I s%(t) D%(t)
K

=L [t+ Ka 1 + (N -K) a2] D%(t)
K 1+N(al +a2)

=[ t+
Na

2 ]ID%(t)+[ al-
a

2 J~IKD%(t)
I+N(a 1 +a2) K I+N(al+ a2) K

t + Na2+ (a 1 - a2) M~(t)
I+N(al+a2)

9

COROLLARY 2.5.6.

M N+1(t)= t+Na2+ [1 +(N+ l)al +(N-1)a2J M~(t).

1 . 1+N(al+a2)

Proof This result is an immediate consequence of Coronary 2.5.3 and
Proposition 2.5.5.

COROLLARY 2.5.7. There exist constants PN, qN such that

(i) PN>O

(ii) qN~O

(iii) PN + 2qN = N.

Proof By induction on N. Certainly this result is true for N = 1 since
Ml(t) = t.Now it follows easily from Corollary 2.5.6 and the inductive
hypothesis that M~(t) is linear in t. Therefore there exist constants PN, qN
such that

Moreover, again by Corollary 2.5.6, we have the recursion formulas

1+ (1 + (N + 1) 01 + (N -1) 02) PN
PN+l= 1+N(al+ a2)

Na2 + (1 + (N + 1) a1 + (N -1) 02) qN
qN+l= 1+N(al+a2)· .
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Therefore it follows easily by induction on N that

PN>O

qN~O.

Finally from the recursion formulas and the inductive hypothesis

2 _1+ 2Naz+(I+(N+l)al+(N-l)az)(PN+ 2qN)
PN+l+ qN+l- I+N(a

1
+az)

1+ 2Naz+(I+(N+l)a 1 +(N-l)az)N

I+N(a 1 +az)

(N + 1) + (N+ 1) Na 1 +(N+ 1) Na z
1+Nal +Naz

=N+1. Q.E.D.

For the binomial distribution, and more generally for the Polya­
Eggenberger urn model, we have the following more special results.

COROLLARY 2.5.8. If az = 0, then for all N

(i) SN(t)=t,

(ii) Mnt) = Nt.

Proof Again these results follows easily by induction on N. Indeed
these results are clearly valid for N = 1. Moreover by the inductive
hypothesis, Proposition 2.5.5, and Corollary 2.5.3

SN+l(t)=t

Mf+l(t) = (N + l)t. Q.E.D.

If a2 = 0, then by Corollary 2.5.8 the a priori probability of selecting a
white ball on any trial is the same as the probability of selecting a white
ball on the first trial. This result is obvious when al = az =°(binomial dis­
tribution) since in this case the contents of the urn are the same for every
trial. It is rather remarkable, though well known [2], that this result is still
valid even when a 1 #- °and the contents of the urn vary from trial to trial.
Even more astonishing is the following result.

COROLLARY 2.5.9. If a2 = 1+aI' then

(i) SN( t) = t N = 1

= 1/2 N#- 1,

(ii) Mnt)=t+(N-l)/2.



URN MODELS 11

Proof Same as Corollary 2.5.8.

If a2 = 1+ai' then by Corollary 2.5.9 the a priori probability of selecting
a white ball on any trial after the first is always exactly 1/2. This extraor­
dinary result suggests that these particular distributioIls may have other
remarkable properties. We will return to study these special distributions
further in Section 4.

By Proposition 2.5.1 the zeroth moment, Mt(t), is simply a constant,
and by Corollary 2.5.7 the first moment, Mf(t), is always a linear function
in t. We shall now generalize these results to higher order moments. We
begin with a recursion formula which expresses the rth moment of DN + 1(t)
in terms of the first r moments of DN(t).

PROPOSITION 2.5.10 (Recursion Formula for Moments).

MN+ I(t) = [1 + (N + r) a 1 + (N - r) a 2JMN(t)
r I+N(al+a2) r

+rf fG)t+Ct)a, +[NG)-C I)Ja,l
i=1 I+N(al+a2) J

t+ Na2+-----
I+N(a 1 +a2)

Proof By Propositions 2.4.1, 2.3.1, 2.1.2,

M~+l(t) = LKD~+ I(t)
K

=L K'i~(t) D~(t) +L KrS~_l(t) D~_l(t)
K K

=L K D~(t) +L [(K + 1Y- Kr] s~(t) D~(t)
K K
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= [1 + (N +r) a1 + (N -r) a2] MN(t)
1+N(a1+ a2) ,

+'f fG)t+C~1)a1+[NG)-C~1)Ja2J
1=1 1+N(a1+a2)

t+ Na2+-----
1+ N(a 1+ a2)

M{'(t)

Q.E.D.

Notice that Corollary 2.5.6, the recursion formula for expectation, is just
a special case of the general recursion formula for moments. As additional
consequences of this general recursion formula, we have the following
results.

COROLLARY 2.5.11. If 0 ~ r ~ N, then there exist constants P~", ..., p~' 0

such that

(i) P~">O

(ii) N N N!
PN' =Il%:6[1+K(a1+ a2)]

(iii) p~,I>O.

Proof By induction on N. Certainly by Proposition 2.5.1 and
Corollary 2.5.7 this result is true for N = 1. Moreover by the recursion
formula and the inductive hypothesis if 0 ~ r ~ N, then

N+1,,= [1 + (N +r) a1 + (N - r) a2] p~" + rp~'-'1-1 >0
p, 1+N(a1+a2)

(N + 1)pN + 1, N+ 1 _ pN, N
N+1 -1+N(a1+ a2) N

(N + 1)!=-,.,....-------
Il%~o [1 + K(a 1+ a2)l

Similarly since each term in the recursion formula is non-negative

Q.E.D.

COROLLARY 2.5.12. The N + 1 moments M~(t), ..., MZ(t) are a basis for
the degree N polynomials in t.
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COROLLARY 2.5.13. The N + 1 distribution functions D~(t), ..., DZ,(t) are
a basis for the degree N polynomials in t.

2.6 Conjectures Concerning the Laws of Signs

For any finite sequence of real numbers C= (co, ..., CN), let z(C) denote
the number of zeroes and v( C) denote the number of sign changes. ignoring
zeroes in C. That is, set

z(Co, , CN) = number of zeroes in (co, ...., CN)

v(co, , CN) = number of sign alternations in (co, ..., CN)'

For a continuous real-valued function g, define the number of zeroes z( g)
and the number of sign changes v(g) in the interval (a, b) by setting

z(g)=supz[g(co), , g(c N )]

v(g) = sup v[g(co), , g(cN)J,

where the supremums are taken over all finite sequences
a < Co < .. , < CN < b. By continuity it follows that in any interval

v( g) :( z( g).

An ordered collection of continuous functions Fo(t), ..., FN(t) is said to
satisfy the Weak Law of Signs in the interval (a, b) iff for every sequence of
constants Co, ... , CN

Similarly an ordered collection of continuous functions Fo(t), ..., FN(t) is
said to satisfy the Strong Law of Signs, or Descartes' Law of Signs, in the
interval (a, b) iff for every sequence of constants co, ..., CN' CK not all zero,

By continuity it again follows that in any interval

Therefore in any interval

Strong Law of Signs => Weak Law of Signs.
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It is also obvious from our definitions that

Strong Law of Signs =?Linear Independence.

Thus linear independence is a necessary, but not a sufficient, condition for
a sequence of functions to satisfy the Strong Law of Signs. A necessary and
sufficient condition for the functions Fo(t), ..., FN(t) to satisfy the Strong
Law of Signs is that for any sequence G<to<t j < ... <tN<b the KxK
subdeterminants of

are of 1 strict sign [12].
It is easy to show that if G j = G2 = 0 (binomial distribution), then the

functions D~(t), ..., D~(t) satisfy the Strong Law of Signs in the interval
(0,1) [11], and this result remains valid if Gj#O, G2=0 (the Polya­
Eggenberger urn model) [7]. In addition, the functions D~(t), ..., D~(t)
are known to satisfy the Strong Law of Signs in the interval (0, 1) when
Gj =0, G2= 1 (uniform B-splines) and this result remains valid when Gj =0,
G2 # 1 (non-uniform B-splines) [12]. These special cases, together with the
fact that by Corollary 2.5.13 the functions D~(t), ..., D~(t) are linearly
independent for all values of G j , G2 , prompt us to propose the following
conjectures.

Conjecture 2.6.1. For all positive finite values of Gj, G2' the ordered set
of functions D~(t), ..., D~(t) satisfies the Weak Law of Signs in the interval
(0,1).

Conjecture 2.6.2. For all positive finite values of Gj, G2' the ordered set
of functions D~(t), ..., D~(t) satisfies the Strong Law of Signs in the interval
(0, 1).

Clearly

Conjecture 2.6.2 =? Conjecture 2.6.1

but, as yet, we know of no proof, probabilistic or otherwise, for either
general conjecture. However, there is some numerical evidence for
Conjecture 2.6.2. Heath has written a computer program to compute
subdeterminants of matrices of the form



URN MODELS 15

He has tested several hundred random numerical examples and in all cases
has found that the K x K subdeterminants were indeed of one strict sign
[9]. We shall discuss the geometric significance of these conjectures further
in Section 3.5.

2.7 Some Simple Limits

In this section we shall study the behavior of the probability dis­
tributions DN(a l , az, t) as either al or az or both approach infinity. For
each of our results we shall give both an intuitive and a rigorous argument.
The reason for this apparent overkill is that our rigorous demonstrations
are based on the recursion formula and follow by induction on N. Now
induction is a fine technique for proof, but not for discovery. Our non­
rigorous intuitive arguments provide the insight and motivation which are
lacking in the inductive proofs.

To begin, consider what happens to the functions f%(a;, az, t),
s%(al' az, t) as al approaches infinity. Let CI' the number of balls of the
same color added to the urn after each trial, be very large compared to the
other urn parameters cz, w, b. Then after selecting exactly K white balls in
the first N trials, the urn will contain approximately Kc I white balls and
(N - K) C1 black balls. Therefore when a l is large.

f%(al' az, t)::::::: (N - K)jN

s%(al,a z, t):::::::KjN

and these approximations become more exact as a l (and hence c I )

approaches infinity. This argument suggests the following lemma.

LEMMA 2.7.1.

Lim f%(al' az, t) = (N - K)jN
at....-)o CXJ

Lim s%(al' az, t) = KjN.
at ~ 00

Proof By Proposition 2.3.1

= (N-K)jN

040/54/i-2

=KjN. Q.E.D.
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Now consider what happens to the functionsfZ(at> a2, t), sZ(at> a2, t) as
a2 approaches infinity. Let C2' the number of balls of the opposite color
added to the urn after each trial, be very large compared to the other urn
parameters Cl' W, b. Then after selecting exactly K white balls in the first N
trials, the urn will contain approaximately (N - K) C2 white balls and KC2
black balls. Therefore when a2 is large

f~(aj, a2' t) ~ KIN

s~(at> a2, t) ~ (N - K)IN

and again these approximations become more exact as a2 (and hence c2)
approaches infinity. This argument suggests the following lemma.

LEMMA 2.7.2.

Lim fZ(a j , a2, t)=KIN=fZ- 1(0, 1, 1)
Q2 -)0 co

Lim sZ(at> a2, t) = (N - K)/N =SZ-I(O, 1, 1).
a2 - 00 '

Proof By Proposition 2.3.1

= KIN

=f~ -1(0, 1, 1)

= (N-K)IN

=SZ-I(O, 1, 1). Q.E.D.

Finally let us consider what happens to the functions fZ(al' a2, t),
sZ(ai' a2, t) when both ai' a2 approach infinity. Suppose a2= a1 + P for
some fixed constant p. Let cl' the number of balls of the same color added
to the urn after each trial, be very large compared to w, b, p. Then since
a2= al + p, C2 ~ Cl' Therefore after each pick an equal number of balls of
each color must be added to the urn. Hence after N trials the urn will
contain approximately NC 1 white balls and NC2 black balls. Thus when a 1

is large
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N( ) NC j
sKaj,az,t :::::--=1/2

2Nc j

17

Q.E.D,

and as usual these approximations become more exact as a j (and hence cd
approaches infinity. This argument suggests the following lemma.

LEMMA 2.7.3. Let p be a fixed constant, and let az = a j + p. Then

Lim f%(aj, az, t)= 1/2=f%(1/2, 1/2, 1/2)
al...-.+ 00

Lim s%(a j , az, t)= 1/2=s%(1/2, 1/2, 1/2).
at --+ 00

Proof By Proposition 2.3.1

(1- t)+ (N-K) aj +Kaz
Lim f%(a j , az, t) = Lim -'--------'---.....:....----=
al~CO al~co 1+N(a1 +az)

= Lim (1-t)+(N-K)a 1 +K(a j +p)
al~oo 1+N(2aj + p)

= 1/2

= f%(1/2, 1/2, 1/2)

L ' N( ) L' (1-t)+Ka j +(N-K)az1m s K a j, az, t = 1m --.C.

al~CO al~co 1+N(a j +az)

= Lim t + Ka j + (N - K)( a j + p)
al~OO 1+N(2aj+p)

= 1/2

= s%(1/2, 1/2, 1/2).

Now let us consider what happens to the probability distributions
DN(aj,az,t) as a j approaches infinity. Let C1 »C2, w, b. Then after the
first trial almost all the balls in the urn will be of the same color as the ball
selected on the first trial. Therefore, with a probability approaching 1, an
the. balls selected on subsequent trials will be of the same color as the
ball selected on the first trial. Hence when a 1 is large

D~(a 1, a2, t) ::::: probability that the ball selected on the first trial is
black

=1-t
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D Z(a j , a2, t) ~ probability that the ball selected on the first trial is
white

=t

K # 0, N

and these approximations become more exact as a1 (and hence C j)
approaches infinity. This argument suggests the following proposition.

PROPOSITION 2.7.4.

Lim D%(aj, a2, t) = I - t
at-- <XJ

=0

=t

K=O

K #0, N

K=N.

Proof By induction on N. Certainly this result is true for N = I since

DMa j,a2,t)=I-t

DJ(aj, a2, t) = t

are independent of a j , a2 • Now by Proposition 2.4.1 and Lemma 2.7.1

Lim D%+ j(t) = Lim f%(aj, a2, t) D%(aj, a2, t)
al -- 00 at -- 00

Lim s%-j(aj, a2, t) D%_l(a j, a2, t)
at -- 00

Therefore by the inductive hypothesis

Lim D~+j(t)=l-t
at -+ 00

=0

=t

K=O

K #0, N

K=N. Q.E.D.

Now consider what happens to the probability distributions
DN(aj, a2, t) as a2 approaches infinity. Let C2» C j , w, b. Then after the
first trial almost all the balls in the urn will be of the opposite color to the
ball selected on the first trial. Therefore, with a probability approaching I,
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the ball selected on the second trial will be of the opposite color to the baH
selected on the first trial. Hence if N> 1, it is not possible to select bans of
only one color. Therefore when az is large

K=O,N

and these approximations become more exact as 0z (and hence cz)
approaches infinity.

To analyze the cases where K #0, N, consider the contents of the urn
after the first two trials. The fact that balls of the opposite color are
necessarily selected on the first two trials leads to the following diagram.

w white

b black

Cz white

° black

C2 »cj,w,b

a2 »aj, t
t =w/(w+b)

2 picks i
~=o

1 pick . az= 1
= t= 1

C2 white
Cz black

a2 =!
t=!

Therefore, by inspection, when az is large

DZ(a 1 , az, t):::::DZ=i(O, 1/2, 1/2)

=DZ-l(O, 1, 1)

and this approximation becomes more exact as a2 (and hence c2)
approaches infinity. These arguments suggest the following proposition.

PROPOSITION 2.7.5. If N> 1, then

Lim DZ(al' a2' t)=DZ-l(O, 1, 1)
Q2- 00

=0

K#O,N

K=O, N.

Proof By induction on N. It is easy to verify this result directly for
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N = 2. Now by the inductive hypothesis, Proposition 2.4.1, and
Lemma 2.7.2

Lim D!j+ l(al> a2, t) = Lim f!j(al, a2' t) D~(al> a2, t)
aZ---1>OO a2---+OO

+ Lim s~_l(al' a2, t) D~_l(al' a2, t)
az......-j> 00

= fN - 1(0 1 1) DN- 1(0 1 1)
K " K "

+s~=HO, 1, I)D~=HO, 1, 1)

= D~(O, 1, 1). Q.E.D.

By Proposition 2.7.5 it follows that the functions D~(al' a2 , t) approach
constant values independent of t as a2 approaches infinity. Moreover, these
constants are the values at t = 1 of the distribution for which al = 0, a2 = 1.
As we shall see in Section 5, these constants are particularly interesting;
indeed they are actually the values at the knots of the uniform B-spline
basis functions.

Finally let us consider what happens to the distributions DN(al> a2, t) as
both a l, a2 approach infinity. Suppose that a2= a1 + P for some fixed
constant p. Let Cl »w, b, p. Then (:2 ~ Cl' Therefore after the first trial, the
urn will contain approximately equal numbers of white balls and black
balls (see diagram).

w white

b black

Cl white

Cl black

K white balls in

next N - 1 trials

Cl white

Cl black

K - 1 white balls in

next N - 1 trials
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Therefore by inspection

DZ(a" a2 , t) ~ (1- t) DZ-'(1/2, 1/2, 1/2) + tDZ =i(1/2, 1/2, 1/2)
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and this approximation becomes more exact as a1 (and hence c1)
approaches infinity. This argument suggests the following proposition.

PROPOSITION 2.7.6. Let p be a fixed constant, and let a2 =a 1 + p. Then

Proof By induction on N. Certainly this result is true for N = 1. Now
by the inductive hypothesis, Proposition 2.4.1, and Lemma 2.7.3

Lim D%+'(al' a2 , t)
U!_ 00

= Lim fZ(al' a2 , t) DZ(a" a2 , t)
a!- 00

+ Lim sZ_,(a1 ,a2 ,t)DZ_,(a"a2 ,t)
at --+ 00

= 1/2[ (1 - t) D% - '( 1/2, 1/2, 1/2) + tD%=f( 1/2, 1/2, 1/2)

+ 1/2[(1 - t) D%=Hl/2, 1/2, 1/2) + tD%=H1/2, 1/2, 1/2)]

=(I-t) [f%-1(1/2, 1/2, 1/2) DZ- 1(1/2, 1/2, 1/2)

+s%=i(1/2, 1/2, 1/2) DZ=f(1/2, 1/2, 1/2)]

+ t[fZ=i(1/2, 1/2, 1/2) DZ=f(1/2, 1/2, 1/2)

+sZ=l(l/2, 1/2, 1/2) DZ=l(1/2, 1/2, 1/2)]

=(1- t) DZ(I/2, 1/2,1/2) + tDZ_ 1(1/2, 1/2, 1/2). Q.E.D.

Now we can compute D%(1/2, 1/2, 1/2) by the following intmt1ve
argument. Consider an urn initially containing 1 white ball and 1 black
ball. Then t = 1/2. Now if a1= a2 = 1/2, then c, = C2 = 1. Therefore after
each trial 1 ball of each color will be added to the urn regardless of which
color is selected. Thus the urn will always contain an equal number of
white balls and black balls. Hence the probability of selecting a white
(black) ball on any trial is always precisely 1/2. That is, this urn models the
binomial distribution with t = 1/2. Therefore

D%(1/2, 1/2, 1/2) = (~ (1/2)K (l/2)N-K

= (1/2)N (~.

This argument suggests the following proposition.
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Q.E.D.

PROPOSITION 2.7.7. D%(1/2, 1/2, 1/2) = (1/2)N(%).

Proof By induction on N. Certainly this result is true for N = 1. Now
by the inductive hypothesis, Proposition 2.4.1, and Lemma 2.7.3

D%+I(I/2, 1/2, 1/2)=f%(1/2, 1/2, 1/2)D%(1/2, 1/2, 1/2)

+s%~I(I/2, 1/2, 1/2)D%_I(1/2, 1/2, 1/2)

= 1/2(1/2)N (~) + 1/2(1/2)N (K~ 1)
=(1/2)N+l [(~+(K~I)J

= (1/2) N + 1 (N; 1).

COROLLARY 2.7.8. Let p be a fixed constant, and let a2 = a1 +p. Then

. N ) N-l[(N-l)(I) (N-l) ]a~:~DK(al,a2,t =(1/2) K -t + K-l t.

2.8 Derivatives

By Proposition 2.3.4 when a2 = ° we have explicit formulas for the
functions D%(t). Therefore when a2 =°it is no trouble at all to calculate
the derivatives of these functions. This is not the case when a2 "1= 0. In this
section we shall develop formulas for the derivatives of the functions D%(t)
when a1 =0, a2~0.

Throughout this section we shall adopt the following notation

Notice that by Proposition 2.3.1 if a 1 = 0, then dN is simply the
denominator off%(t), s%(t). Therefore

df% -1
- -
dt dN

ds N 1----!5. =_
dt dN'

Notice too that

a2=O=>dN= 1

a2=I=>dN=N+1.
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LEMMA 2.8.1. If a 1 == 0, then

d
SN(t) =~ SN -1(t)K d K-1 .

N

Proof This result follows easily from Proposition 2.3.1.

PROPOSITION 2.8.2. f/ a1 = 0, then

23

Proof By induction on N. This result is easy to verify directly for
N = 1. Now by Proposition 2.1.2, Lemma 2.8.1, the recursion formula
(Proposition 2.4.1), and the inductive hypothesis

dDN+ 1 dlfN ds N
__K_ = ---!:s. D N( t) + ----K.=l D N (t)

dt dt K dt K-1

+S%_1(t) [d N (D%=i(O-D%=Ut))]
N-1

D%_1(t)-D%(t)

dN

N
--d- [f%(t) D%-1(t) + s%(t) D%= }(t)]

N-1

+ d N [(f%(t) + s%(t)) - (f%-1(t) + s% -1 (t))] D%= i(t)
N-1
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D N (t) - DN(t) N
= K-I K +-[fN-I(t)DN-I(t)+SN-I(t)DN-1(t)]d

N
d

N
K-I K-I K-2 K-2

Q.E.D.

COROLLARY 2.8.3 (Bernstein Polynomials). If a1 = a2 = 0, then

dD N

----.!i =N[DN-1(t) - DN-I(t)]dt K-I K .

COROLLARY 2.8.4 (Uniform B-Splines). If a l = 0, a2 = 1, then

dD N

----.!i = D N-I(t) _ DN - I(t).
dt K-I K

When al = 0, Proposition 2.8.2 gives us a simple formula for the
derivative of the functions D%(t) in terms of the functions D% -I(t). This
formula is not valid when °1 =I 0, 02 = °as can be checked quite readily
from Proposition 2.3.4. However, in this case the derivative can be
computed explicitly. When a l =I 0, a2 =I°we know of no simple method for
computing the derivatives of D%(t).

Proposition 2.8.2 can be extended in the following manner.

PROPOSITION 2.8.5. If°1 = 0, then

dP~% = N(N-1) ... (N - p + 1) L (-l)J+P (~) D%=f(t).
dt dN_ 1 dN- 1 ... dN- P J ]

Proof This result follows easily from Proposition 2.8.2 by induction
onp.

COROLLARY 2.8.6 (Bernstein Polynomials). If a1 = a2 = 0, then

dPD
N

( )dt/=N(N-1) ... (N-p+1)L(-1)J+P ~ D%=f(t).
. J
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COROLLARY 2.8.7 (Uniform B-splines). If al =0, a2 = 1, then

dPDZ =" (-1) (P) DN-fJ(t).
dt P 1.:- j K-J

J

25

The summation in Proposition 2.8.5 and its corollaries need not always
be taken from j = 0 to j = p. In fact since

DZ(t) =0 K<O or K>N,

the summation is really just from j = max(K+P - N, 0) to j = min(K, p).

3. ApPROXIMATIONS

Let g(t) be a continuous real-valued function defined on some intervall
and let D N( t) be anyone of the distributions described in Section 2. Define
a linear functional D N: C[I] --+ C[O, 1] by setting

DN[g](t) =L g(eZ) DZ(t)
K

for some constants eZ, K = 0, 1, ..., N in the domain of g(t). Since we are
free to choose the constants eZ any way we please, we shan choose them so
that linear functions are exactly reproduced. Recall from Corollary 2.5.7
that there exist constants PN' qN such that

(i) PN>O

(ii) qN~O

(iii) PN +2qN = N.

Assume that /2 [-qNlpN, (N-qN)lpN] and set

eZ= (K-qN)/PN'

Notice in particular that by Corollaries 2.5.8, 2.5.9

a2 =°=>eZ = KIN,

a2 = 1 +al => eZ = (2K + 1- N)/2.

Now it follows immediately from Proposition 2.1.1 and Corollary 2.5.7 that

DA1] = 1

DN[t] = t.
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By Corollary 2.4.2 the function DN[g]{t) is a polynomial in t of degree
less than or equal to N. Moreover by Corollary 2.5.11 if g(t) is a
polynomial of degree r, °~ r ~ N, then D N[ g ](t) is also a polynomial of
degree r. For reasons which will soon become clear, we shall regard the
functions DA g](t) as polynomial approximations to the function g(t).
Indeed when DN( t) is the binomial distribution, the polynomials DA g] (t)
are the usual Bernstein approximations to the function g(t) on the interval
[0, 1]. The approximations induced by the Polya-Eggenberger urn model
(a2 = 0) have also been studied by several authors [7, 13, 14]. We now
proceed to investigate the common properties of these rather special
polynomial approximations in more detail.

3.1 Convexity

We begin with some simple consequences of results derived in Section 2.

PROPOSITION 3.1.1. For any constant c, DN[ c] = c.

Proof This result is an immediate consequence of the fact that D N( t) is
a probability distribution (Proposition 2.1.1).

PROPOSITION 3.1.2. DN[t] = t.

Proof This result is an immediate consequence of Corollary 2.5.7.

COROLLARY 3.1.3. D N is the identity on linear functions.

PROPOSITION 3.1.4. If a2 = 0, then

DN[g](O) = g(O)

DAg](1) = g(1).

Proof This result is an immediate consequence of Proposition 2.3.4.

The convex hull of a set S is the smallest convex set which contains S.
Thus the convex hull of a finite set of points {Po, ..., PN} is the set

PROPOSITION 3.1.5. graph(DN[g])~convexhull (graph g).
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graph(DNEg]) = {(t, DA g](t) I0 ~ t ~ I}

= UDN[t](t), D A g ](t)) Io~ t ~ I}

= {~ (e%, g(e%)) D%(t) I0 ~ t ~ 1}

<;; convex hull {(e%, g(e%)) I0 ~ K ~ N}

<;; convex hull (graph g). Q.E.D.

By Proposition 3.1.5 the values of DNEg](t) necessarily lie in the general
proximity of the values of g(t). It is for this reason that We regard the
functions DNEg](t) as approximations to the function g(t). Later on we
shall show that if a2 = 0 collectively the approximations D NE g ](t) uniquely
determine the function g(t). We shall also show that the graphs of the
approximations DAg](t) actually mimic the shape of the graph of g(t).

3.2 Symmetry

We begin with a simple observation.

LEMMA 3.2.1. eZ_ K = 1-e%.

Proof By Corollary 2.5.7 and the definition of e%

1-ej('=1-(K-QN)/PN

PN+qN-K

PN

N-qN-K

PN

=eZ- K • Q.E.D.

Now let g(t) = g(1 - t). Because of the symmetry of our urn models
(Section 2.2), we have the following general result.

PROPOSITION 3.2.2. DN[gJ(t) = DAgJ(t).

Proof By Proposition 2.2.1 and Lemma 3.2.1

= L g(l- ej(') Dj('(t)
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3.3 Recursion

The recursion formula

RONALD N. GOLDMAN

= L: g(eZ_ K ) DZ_ K(l- t)

= L: g(e%) D%(1- t)

= D[g](t). Q.E.D.

for the distributions D N(t) (Proposition 2.4.1) engenders a recursive
algorithm for the approximations DN[g](t). Define a triangular array
P~[g](r), O~K+L~N, recursively by setting

PU g ](r) = g(e~n

P~[ g ](r) = f% - L(r) p~-1 [g ](r) + s%- L(r) P~:;: i [g ](r).

We shall show shortly that

This recursive construction algorithm is especially useful because it
provides a simple, numerically stable technique for computing the value of
D N[ g] (r) for any parameter r without the need to compute explicitly the
values of D%(r), 0 ~ K ~ N.

To prove that png](r)=DN[g](r), we use a simple inductive
argument.

Proof By Proposition 2.4.1

L Pl{g](r) D%-I(r) = L U%-I(r)PUg](r) + S%-lp!J.:+ l[g](r)]D%-I(r)

= L [/%-I(r) D%-I(r) +s~=f(r)D~=f(r)] PUg](r)

= L g(e%) D%(r)

Q.E.D.

LEMMA 3.3.2. L Pi[g](r) D%-L(r) =DN[g](r).

Proof This result follows from Lemma 3.3.1 by induction on L.
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PROPOSITION 3.3.3. P~[g](r)=DN[g](r).

Proof This result follows immediately from Lemma 3.3.2 with L = N.

For the Polya-Eggenberger urn model (a2 = 0), there exists a second
recursion formula for the distributions DN(t) and this formula begets a
second recursive algorithm for the approximations D NC g] (t). Let
QU g ](r), °~ K + L ~ N, be the triangular array defined recursively by
setting

Q~[g](r) = g(eZ) = g(K/N)

Q~[g](r)= f~-l(r) Q~-l[g](r) + s~-l(r) Q~~ i[g](r).

We shall show that if a2 = 0, then

Q~[ g ](r) = DN[ g ](r).

To proceed, we shall need to extend the definitions of the functionsfZ(t),
sZ(t), DZ(t) to values of t> 1 and K> N. We do so simply by adopting the
formulas of Propositions 2.3.1, 2.3.4 for arbitrary values of t, K, N.

PROPOSITION 3.3.4 (Recursions). If a 2 = 0, then

Proof By Proposition 2.3.1

and by Proposition 2.3.4

Combining all these terms, we obtain
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f~(t) D%(t) + S~(t) D%_l (t + ad

[
K(I-t-al)] D%(t)

= (l-t+Nad+ (N+I-K) (I+Nad

= [(N + 1)(1- t) + (N + 1)(N-K) a1].DN(t)
(N+I-K)(I+ Na l) K

=(N+l)(I-t+[N-K]ad DN(t)
(N + 1- K)(1 + Nad K

=D%+l(t).

LEMMA 3.3.5. If a2 = 0, then

s%(t) = S%_l(t + ad

f %( t) = f %_1( t + a 1 ).

Proof These results follow immediately from Proposition 2.3.1.

PROPOSITION 3.3.6. If a2 = 0, then

Qng](r) = DN[g](r).

Q.E.D.

Proof By induction on N. Clearly this result is true for N = 1. Now
define two piecewise linear polynomials f(t), h(t) by setting

f(KjN) = g[Kj(N+ 1)]

h(KjN) = g[(K+ l)j(N + 1)]

Then by construction and Lemma 3.3.5

Q~[ g ](r) =Qi[f](r)

Q~[g](r)= Q7<_I[h](r +ad

Therefore by the inductive hypothesis

K=O, 1, ..., N

K=O, 1, ...,N.

O~K+L~N

I~K+L~N+1.

Q~[g](r) = Q~[f](r) = DN[f](r)

Hence by Proposition 3.3.4
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Q~+ l[gJ(r) =f~(r) Q~[gJ(r) +s~(r) Q~[gJ(r)

=f~(r) DN[fJ(r) +s~(r) DN[hJ(r +ad

= I [f~(r) D%(r) + s~(r) D%_I(r + a1)] g[K/(N + 1)]
K

= I g[K/(N + l)J D%+1(r)
K

31

Q.E.D.

The second recursive algorithm for the approximations DAgJ(t) goes
beyond the bounds of probability theory. The construction employs
functions f~(r), s~(r) for which K> L, and the proof resorts to values of
D%(t + al) for which t + a1>1. In neither case is there a clear probabilistic
interpretation for these functions, and yet if we extend the formulas in
Propositions 2.3.1, 2.3.4 beyond the realm in which they were originally
derived, it all works. This is a somewhat bizarre and unexpected result.

P~[gJ (r)= O~[gJ (r) = g(%)

Oi [gJ (r)

•o • • •

640/54/1-3

Recursive Construction Algorithms for ON [gJ (t) (N = 2, "2 = 0)

FIGURE 1
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By Proposition 3.1.2 DN[t] = t. Therefore for the Polya-Eggenberger
distributions, we can illustrate the two recursive construction algorithms
for DN[g](t) geometrically with the simple diagram in Figure 1.

For the binomial distribution

a1 =a2=0

f~~L(r)=f;c-l(r)=l-r

s~ - L(r) =s;c-l(r) = r.

Therefore for the binomial distribution, the two recursive algorithms
depicted above are identical. That is, for the binomial distribution

QHg](r) = P;c[g](r) for all K, L.

3.4 Uniqueness

Corollary 2.5.13 states that the polynomials D~(t), ..., D~(t) are linearly
independent. This result has the following consequences.

PROPOSITION 3.4.1. DN[g] = DN[h] iff g(e~) = h(en °~ K ~ N.

PROPOSITION 3.4.2. Ifa2=0, DAg]=DN[h] for all N iff g(t)=h(t)
for °~ t ~ 1.

Proof Certainly if g(t) = h( t) for all t, then DN[ g] = DN[h] for all N.
Conversely if az = 0, then e~ = KIN. Therefore by Proposition 3.4.1 if
DN[ g] = D N[h J for all N, then g(r) = h(r) for all rational fractions r.
Hence it follows by continuity that get) = h(t) for all values of °~ t ~ 1.

Q.E.D.

We can sharpen the preceding result somewhat as follows.

PROPOSITION 3.4.3. If a2 = 0, then for any integer M DN[g] = DN[h]
for all N';3 Miff get) = h(t) for °~ t ~ 1.

Proof Same as Proposition 3.4.2.

Thus if az = °we can conclude that two continuous functions on [0, 1]
are identical iff their approximations are identical for all sufficiently large
values of N. Hence collectively the approximations DN[gJ(t) uniquely
characterize the function g( t).

3.5. The Variation Diminishing Property

In Section 2.6 we introduced two conjectures concerning the Laws of
Signs. In this section we shall derive some geometric consequences of these
conjectures.
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A linear functional F: C[I] ~ C[O, 1] is said to have the variation
diminishing property iff for every function g

v(F[g]) ~ v(g).

Here v is the symbol defined in Section 2.6. Thus intuitively F is said to be
variation diminishing iff for every function g the number of times the graph
of F[ g] crosses the t-axis is less than or equal to the number of times the
graph of g crosses the t-axis.

Now let F(t) = (Fo(t), ..., FN(t)) be an ordered collection of continuous
real-valued functions defined on the interval [0, 1], and let F[ gJ be the
linear functional defined by setting

Recalling the Laws of Signs from Section 2.6, we have the following general
results.

PROPOSITION 3.5.1. The linear functional F[ g] is variation diminishing
iff the functions F(t) satisfy the Weak Law of Signs in the interval (0, 1).

Proof If the functions F(t) satisfy the Weak Law of Signs in the
interval (0, 1), then by definition

v(F[g]) = v [ L g(e%) FK(t)]

~ v[g(e%)]

~ v(g).

Therefore F[ g] is variation diminishing. Conversely suppose that F[ g] is
variation diminishing. Let co, ..., cN be a sequence of constants and let g(t)
be the piecewise linear function on I defined by setting

g(e%) = cK.

Then since F[ g] is variation diminishing

v [ L CKFK(t)] = v(F[g])

~v(g)

= v[g(e%)]
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Therefore the functions F(t) satisfy the Weak Law of Signs in the interval
(0, 1). Q.E.D.

COROLLARY 3.5.2. If the functions F(t) satisfy the Strong Law of Signs
in the interval (0, 1), then the linear functional F[ g] is variation diminishing.

Now Proposition 3.5.1 together with Conjecture 2.6.1 suggest the follow­
ing general conjecture.

Conjecture 3.5.3. For all positive finite values of aI' a z, the linear
functionals D N[ g] are variation diminishing.

By Proposition 3.5.1 it follow~ immediately that

Conjecture 2.6.1 <:> Conjecture 3.5.3.

Now Conjecture 2.6.1 (the Weak Law of Signs) is known to be valid when
az = 0 (the Polya-Eggenberger urn model) and when al = 0 (non-uniform
B-splines). Thus Conjecture 3.5.3 (the variation diminishing property) must
also be valid at least in these two special cases. We believe that the
variation diminishing property is valid for all the distributions which arise
from Friedman's urn model, but, like the Laws of Signs, we know of no
proof, probabilistic or otherwise, for this general conjecture.

Conjecture 3.5.3 can be strengthened in the following manner.

Conjecture 3.5.4. For all positive finite values of aI, az and for all linear
functions L

v(D N[g] - L) <v(g - L).

Conjecture 3.5.4 is an immediate consequence of Conjecture 3.5.3 and
Proposition 3.1.3 since by linearity

v(DN[g] - L) = v(DNCg - L]) <v(g - L).

Conjecture 3.5.4 says that for any straight line L the number of times the
graph of D N[ g] crosses L is less than or equal to the number of times the
graph of g crosses L. Thus for any straight line L, DN[ g] oscillates about
L less than g oscillates about L. Hence globally the graph of D N[ g]
mimics the general shape of the graph of g~

3.6 Limits

In this section we shall investigate the behavior of the approximations
DN[gJ as a l or az or N approaches infinity. We begin with some simple
consequences of results derived in Section 2.7.
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PROPOSITION 3.6.1. Lima! ~ 00 D N[ g ](t) = (1 - t) g(e~) + tg(eZ)·

Proof This result is an immediate consequence of Proposition 2.7.4.
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PROPOSITION 3.6.2. Lima2~ooDN[g](t)=L%:i g(e%)D%-I(O, 1, 1).

Proof This result is an immediate consequence of Proposition 2.7.5.

By Proposition 3.6.1 as al approaches infinity the function DN[ g ](t)
approaches the chord joining the end points of g(t), and by
Proposition 3.6.2 as a2 approaches infinity the function DN[gJ(t) reduces
to a constant. Thus when either a l or a2 is very large, the functions
DN[g](t) are not very good approximations to g(t). But suppose we hold
a j , a2 fixed and increase the value of N; what then can we say about the
approximations DAg](t)? For the binomial distribution (al=a 2 =O) we
have the following well known result.

PROPOSITION 3.6.3 (The Weierstrass Approximation Theorem). If
a l = a2 = 0, then as N approaches infinity the approximations DN[ g ](t)
converge uniformly to the original function g(t).

Proof See [3].

Thus increasing N makes the approximation better, but increasing al or
a2 generally makes it worse. Now one might hope that for aI' a2 fixed the
Weierstrass Approximation Theorem would remain valid; that is, that
eventually N would dominate over aI' a2 • However, we shall now show
that this is not the case even for the Polya-Eggenberger distributions
(a 2 = 0).

LEMMA 3.6.4. If a2 = 0, then

Proof By induction on N. Certainly this result is true for N = 1.
Moreover by the recursion formula for moments (Proposition 2.5.10), the
formula for expectation when a2 = 0 (Corollary 2.5.8), and the inductive
hypothesis
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[1 + (N + 2) ajJ[N(N-1) t2 + N(1 + Naj)tJ

(1 + Na j)(1 +ad

2N(1 +ad tZ + (1 +Nad(1 +aj)t
+--,-------,-----------

(1 + Nad(1 + ad

[(NZ + N - 2) aj + (N -1) + (2 + 2adJ Nt2

(1 + Nad(1 + ad

[(N Z + 2N) a j + N + (1 + a j)J[1 + Na j J t+.=...:...._-----'-----'--,....,--------'-----=--,=-=----=-=---
(1 +Naj)(1 +a j)

(1 + Nad(N + 1) N tZ + (N + 1)( [N + 1J a j + 1)(1+ Nad t

(1 +Na j)(1 +a j)

(N+ 1)Ntz+(N+ 1)([N+ 1J aj + 1)t

1 +a j

PROPOSITION 3.6.5. If az = 0, then

DA tZJ = (N - 1) t
2 + (1 + Nad t.

N(1+a j)

Proof This result is an immediate consequence of Lemma 3.6.4. It is
also proved by an alternate method in [13].

PROPOSITION 3.6.6. If az = 0, then
Z

L · D [ zJ _ t + aj t1m Nt - .
N-.oo l+a j

By Proposition 3.6.6 the Weierstrass Approximation Theorem fails to
hold for the Polya-Eggenberger distributions even for as simple a function
as g(t) = tZ

• Nevertheless by Proposition 3.4.3 the approximations
DA g J(t), N?; M, still uniquely determine the function g(t) for °~ t ~ 1.

3.7 Derivatives

For approximations induced by urn models with az = ° (Polya­
Eggenberger urn models) we have explicit formulas for the functions D~(t)

(Proposition 2.3.4). Therefore when az = 0, we can compute the derivative
of the approximation D N[ g J(t) explicitly. On the other hand when a j = 0,
we can apply the results of Section 2.8 to compute the derivatives of
D N[ g ](t). Let

as in Section 2.8. Then we have the following results.
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PROPOSITION 3.7.1. If a l = 0, then

D:"'[g](t) = d N L [g(eZ+ l )- g(eZ)J DZ-l(t).
N-l

Proof This result is an immediate consequence of Proposition 2.8.2.

COROLLARY 3.7.2 (Bernstein Approximations). If al = a2 = 0, then

D:"'[g](t) = NL [ g (K; 1) -g (~)JDZ-1(t).
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COROLLARY 3.7.3 (Uniform B-Spline Approximations). If al = 0, a2 = 1,
then

D:"'[g](t) = L [g(eZ+ d- g(eZ)] DZ-l(t).

PROPOSITION 3.7.4. If a l = 0, then

Dl!) [g] (t) = _N_(N_-_1'-)._. ._(N_-...;:.p_+_1_)
dN - l dN - 2 ·•· dN _ p

Proof This result is an immediate consequence of Proposition 2.8.5.

COROLLARY 3.7.5 (Bernstein Approximations). If al = a2 = 0, then

Dl!)[g](t) = N(N-1) .. · (N - P + 1)

x~ [~( -1)J+P (~) g (K; j)JDZ-P(t).

COROLLARY 3.7.6 (Uniform B-Spline Approximations). If al = 0, a2 = 1,
then

As in Proposition 2.8.5 and its corollaries the summation in
Proposition 3.7.4 and its corollaries need not always be taken from j =0 to
j = p. In fact the summation is really just from j = max(K + p - N, 0) to
j=min(K, p).
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4. SPLINES

In this section we shall restrict our attention to urn models for which
a2 = 1+ a l . By Corollary 2.5.9 these urn models have the remarkable
property that the a priori probability of selecting a white ball on any trial
after the first is always exactly 1/2 regardless of the initial contents of the
urn. We call such urn models spline models for reasons which will become
clear shortly.

Let X o< x I < ... < X M + aj be an increasing sequence of real numbers. A
function S(t) is said to be continuous polynomial spline of degree N, order
N + 1, with knots (xo, ..., x M + d iff there are M + 1 degree N polynomials
Po(t), ..., PM(t) such that

K = 0, 1, ..., M - 1.

Conversely given M + 1 degree N polynomials Po(t), ..., PM(t) such that

K=O,I, ...,M-l

we can construct a continuous polynomial spline S(t) by setting

S(t) = PK(t)

(see Figure 2).
We now proceed to make the connection between urn models and

splines.

• • • • • • • •

A continuous polynomial spline (M=6)

FIGURE 2
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4.1 Spline Distributions

We begin with the following fundamental result.
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Proof Consider 2 urns-urn 1 representing the case t = 0 and urn 2 the
case t = 1. Initially urn 1 contains no white balls and h black balls and urn
2 contains h white balls and no black balls. After 1 pick urn 1 will contain
ha2 white balls and h + hal black balls. Similarly urn 2 will contain h + hal
white balls and ha2 black balls (see diagram).

o white

h black

urn 1 t= 0

1 pick = black ball

ha2 white

h + hal black

h white

o black

urn2 t=1

1 pick = white ball

1
h + hal white

ha 2 black

Hence if a2 = 1+ aI' then after 1 pick the contents of the 2 urns are
identical. Therefore

Define

Q.E.D.

SON(t) = DZ_K(t - K)

=0

0~K~t~K+1~N+l

t <°or t > N + 1.

By Proposition 4.1.1 it follows that SON(t) is a continuous polynomial
spline of degree N with knots (0, 1, ... , N + 1) (see Figure 3).



40 RONALD N. GOLDMAN

o 2 3 ... N+l ...
2

The Polynomial Spline SON(t)

FIGURE 3

N N+l

Thus the urn models for which a2 = 1+ a I naturally generate polynomial
splines. For this reason we call these special urn models spline models.

The splines SON(t) are generally not differentiable at the knots. Indeed in
the quadratic case it follows from the recursion formula (Proposition 2.3.1)
that

D 2(t) = (1- t +ad(l- t) = t
2

- (2 +aI)t +(1 +ad
o 2(1 + ad 2(1 + ad

D2(t)= (t+ 1+ad(1-t)+(2-t+adt = -2t2 +2t+(1 +a j)
j 2(1+a j) 2(1+ad

D~(t)= (t+aj)t = P+ajt.
2(1 + a j) 2(1 +ad

Therefore if aj # 0, then by direct computation

O aj dD~
# -

2(1+ a j ) dt I, ~ 0

dD~ 2+aj 1 dDt
~---='--:-# --=-

dt It~j 2(1+ad l+aj dt 1,=0

dDt -1 -(2+ad dD6
=--# =-

dt 1'~l 1+aj 2(1 +ad dt \,~o
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K=O,1,2,3.

Notice however that we do obtain equality when 01 =0. We shall return to
this very important special case (B-splines) again in Section 5.

Because the splines SON(t) are generated from urn models, they inherit
the following additional properties.

PROPOSITION 4.1.2 (Symmetry). SON(t) = SON(N + 1- t).

Proof Let K:::; t:::; K + 1. Then N - K:::; N + 1- t :::; N +1- K. There­
fore by Proposition 2.2.1

SON(t) = DZ_K(t - K)

=D~(K+1- t)

= SON(N + 1- t).

COROLLARY 4.1.3 (Symmetry).

(
N+ 1) (N +1 )SON -2-- t =SON -2-+ t .

Proof By Proposition 4.1.2

(
N+ 1) ( N +1 )SON -2-- t =SON N+1--

2
--t

(
N+ 1 )

=SON -2-+ t .

PROPOSITION 4.1.4 (End Points).

Q.E.D.

Q.E.D.

SON(O) = 0

SON(N + 1)=0

Proof By Proposition 2.3.2 if N> 0

N>O

N>O.

SON(O) = DZ(O) = 0

SON(N + 1) = D(i(l) = O. Q.E.D.
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PROPOSITION 4.1.5 (Explicit Formulas).

0:::; t:::; 1

Proof These results follow immediately from Proposition 2.3.3.

PROPOSITION 4.1.6 (Continuous Distribution).

f
N+!

SON(t) dt = 1.
o

Proof Let K ~ t ~ K + 1. Then by Proposition 2.1.1

SON(t) = DZ _K(t - K)? O.

Moreover, again by Proposition 2.1.1,

f
N+! fK+!

SON(t) dt = I DZ ~ K(t - K) dt
o K K

= I rDZ_K(u) du
K 0

= (dU
=1.

PROPOSITION 4.1.7 (Expectation).

rN+! N+l
J
o

tSON(t) dt=-2-·

Q.E.D.

Proof By symmetry. From Corollary 4.1.3 the distribution SON(t) is
symmetric about the point (N + 1}/2. Now by a standard argument the
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expectation of a symmetric distributions is the point of symmetry [10].
Hence

f
N+l N + 1

tSON(t) dt=--.
o 2

By integration.

f
N+l fK+l

tSoN(t)dt=L tDZ_K(t-K)dt
o K K

= f L (u + K) DZ_K(u) du
o K

= fL(u+N-K)D%(u)du
o K

= f (u + N) L D%(u) du - rL KDZ(u) duo
o K 0 K

Now by Proposition 2.1.1 and Corollary 2.5.9

N-1
LKD%(u)=u+-

2
-·

K

Therefore

fN+l fl fl II r1(N-l)
tSoN(t)dt= udu+ Ndu- udu-I du

o 0 0 0 "0 2

=N_(N-l)
--2-

N+l
-2-' Q.E.D.

Thus many of the characteristic properties of the splines SON(t) are
simple consequences of the corresponding properties of the distributions
DN(t). In particular, the splines SON(t) are continuous distributions. We can
such distributions spline distributions.

When a, = 0 we shall show shortly that the spline distribution SON(t) is
actually the normalized uniform B-spline basis function of degree N with
knots (0,1, ..., N + 1). At the other extreme, as al approaches infinity, we
have the following result.
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PROPOSITION 4.1.8 (Limits). If K ~ t ~ K + 1, then

Proof Let K ~ t ~ K + 1. Then by Corollary 2.7.8

Lim SON(t) = Lim Dlfv_K(t-K)
at ---oJ- 00 at ---;. 00

= (1/2) N - 1 [ (;=~) [1 - (t - K)] +(N~~~ 1) (t - K) ]

= (1/2)N-i [(;=~) (K+ 1- t) +(N; 1) (t-K)} Q.E.D.

By Proposition 4.1.8. the splines SON(t) approach linear splines as Gi

approaches infinity. Thus, for example, in the limit we have the following
diagram.

3/8

1/4

o 2 3

FiGURE 4

4 5 6
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4.2 Recursion

By translating the functions SON(t), we can define spline distributions
over any sequence of consecutive integers (J, J + 1, ..., J + N + 1). Let

or equivalently let

SJN(t) = DZ_K(t - J - K)

=0

J~J+K~t~J+K+1~J+N+ 1

t < J or t > J +N + 1.

Then SIN( t) is a spline distribution with knots (J, ..., J +N + 1).
We are going to derive a recursion formula for the splines SJN(t). We

begin by recalling the standard recursion formula for D%(t).

LEMMA 4.2.1.

fN t)=K+1-t+Nal
K( 1+N+ 2Nal

SN (t)=t+N+1-K+Na l .
K - j 1+ N + 2Na j

Proof These formulas follow immediately from Proposition 2.3.1.

PROPOSITION 4.2.2.

Proof This result follows immediately from Proposition 2.4.1 and
Lemma 4.2.1.

LEMMA 4.2.3.

f N (t_K)_N+2-t+Nal
N + 1 - K - 1+ N + 2Na j

SN (_ K) _ t + Naj
N-K t -1 +N+2Nal

K~t~K+l

K~t~K+1.

Proof These formulas follow immediately from Lemma 4.2.1.
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PROPOSITION 4.2.4.

S () (t-J)+Na l (N+2+J-t)+Na l
J, N+ 1 t = (1 + N) + 2Nal SJ, N(t) + (1 + N) + 2Nal SJ+ I, N(t).

Proof Let J + K:::::; t :::::; J + K + 1. Then by Proposition 2.4.1 and
Lemma 4.2.3

SJ, N+ I(t) = DZ+ I-K(t - J - K)

= fZ+ I_K(t-J -K) DZ+ I-K(t -J-K)

+ sZ _ K( t - J - K) DZ _ K( t - J - K)

=(N+2)-(t-J)+ Na l DN [t-(J+1)-(K-1)]
1+N+2Nal N-(K-I)

+ (t-J)+Nal DN (t-J-K)
1+ N + 2Na1 N- K

= (N + 2 + J - t) + Nal S (t)
1+N+2Nal J+I,N

+ (t - J) + Nal SJ N(t). Q.E.D.
1+N+2Nal '

When a l = 0, Proposition 4.2.4 becomes

(t-J) (N+2+J-t)
SJ,N+I(t)= 1+N) SJ,N(t) + (1 +N) SJ+I,N(t).

This recursion formula is identical to the Cox-de Boor recursion formula
for B-splines with integral knots [1]. Therefore when a l = 0, az = 1, the
spline distributions SJN(t) are the normalized uniform B-spline basis
functions, Thus Proposition 4.2.4 is a simple generalization of the Cox­
de Boor recursion formula for B-splines. We shall return to the subject of
B-splines again in Section 5.

We close this section with some additional observations about the
functions ff<.(t), sf<.(t). These functions are defined probabilistically only for
0:::::; t:::::; 1. However we can use the formulas of Lemma 4.2.1 to extend the
definitions of ff<.(t), sf<.(t) outside the interval [0, 1]. We then have the
following result.

LEMMA 4.2.5.

f%(t)=ff<._l(t-1)

s~(t) = sf<. _ 1(t - 1).
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Proof These results follow immediately from Lemma 4.201.

COROLLARY 4.2.6.

f%(l)=fZ_l(O)

s%( 1) = sZ_1(0).
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We can use Corollary 4.2.6 to gIVe an alternate proof of
Proposition 4.1.1.

PROPOSITION 4.1.1 (Revisited). D%(1)=D%_I(O).

Proof By induction on N. Certainly this result is true for N = 1 since

DMt) = 1- t

Dl(t)=t.

Now by the recursion formula, Corollary 4.2.6, and the inductive
hypothesis

D%+ 1(1) = f%(l) D%(1) +sL 1(1) DZ_ 1(1)

= f%_I(O) DZ_1(0) +SZ_2(0) DL2(0)

= DZ:t: i(O). Q.E.D.

4.3 Additional Conjectures Concerning the Laws of Signs

In Section 2.6 we presented two conjectures concerning the Laws of
Signs for the polynomials {D%(t)}. In this section we shall introduce two
additional conjectures regarding the Laws of Signs for the splines {SIN(t) }.

It is well known that the normalized uniform B·spline basis functions
satisfy the Weak Law of Signs over any interval [12]. Thus when a l = 0,
a2 = 1, the splines {SJN(t)} satisfy the Weak Law of Signs. This one special
case coupled with the basic similarity of all our spline distributions
prompts us to propose the following general conjecture.

Conjecture 4.3.1. For all positive finite values of ai' the splines
{S IN( t)} satisfy the Weak Law of Signs in any interval.

If we restrict our attention to the unit interval (0, 1), then for a2 = 1+ a i

Conjecture 4.3.1 => Conjecture 2.6.1

because

640/54/1 A
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For arbitrary integral unit intervals, Conjecture 2.6.2 suggests the follow­
ing general conjecture.

Conjecture 4.3.2. For all positive finite values of a j , the splines
{SIN(t)} satisfy the Strong Law of Signs over any unit interval (K, J( + 1).

Notice that

Conjecture 2.6.2 => Conjecture 4.3.2

since, by definition, over the interval (K, K + 1)

N

L CJSJN(t) = I CK-JSK- J.N(t)
J J~O

N

= I cK_JDZ_it-K)
J~O

N

= L CK+J_ND!j(u),
J=O

where 0:( u = t - K:( 1. Therefore if the polynomials {1)%(u)} satisfy the
Strong Law of Signs in the interval (0, 1), then the splines {SJN(t)} satisfy
the Strong Law of Signs in the interval (K, K + 1).

The Strong Law of Signs necessarily implies linear independence, and
indeed because the polynomials {D~(t)} are linearly independent, we have
the following result for the splines {SIN(t) }.

PROPOSITION 4.3.3. The splines {SIN(t)} are linearly independent.

Proof Suppose that there are constants {cJ} such that for all t

I CJSJN(t) = o.

For all t such that K:( t:( K + 1, let u = t - K. Then

I CK+ J_ NDIj(u) = I cJSJN(t) = o.

But by Corollary 2.5.13 the functions {D~(u)} are linearly independent.
Therefore

CK _ N = ... = CK = O.

Since this result is true for every K, it follows that

for every J. Therefore the functions {SJN(t)} are linearly independent.
Q.E.D.
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As yet we know of no proofs, probabilistic or otherwise, for Conjec­
tures 4.3.1, 4.3.2. However, obviously any such proofs must be closely
related to the proofs of Conjectures 2.6.1, 2.6.2. We shall discuss the
geometric significance of these conjectures further in Section 4.4.

4.4 Spline Approximations

In Section 3 we constructed polynomial approximations D N[ gJ (t) to
continuous real-valued functions g(t) defined on the interval [e~, eZl Here
we shall generalize this construction to spline approximations S",[f)(t) of
continuous real-valued functions f(t) defined over the interval (- 00, (0).

Recall from Section 3 that for a2 = 1+ a 1

e% = (2K + 1- N)/2

Now let f(t) be a continuous real-valued function. Define the linear
functionals SIN[f], SN[f] by setting

and

SJN[f](t) = L f(eJ+K) D%(t - J)
K

=0

J~t~J+l

t<J or t>J + 1

SN[f](t) = L SJN[f](t).
J

For reasons which will soon become clear, we shall regard SJN[f) as a
local approximation and SN[f] as a global approximation to f

By construction

= f(eij) D[j(t) + ... + f(eIJ) DIJ(t) + '" + fee'!,) D'!,(t) O~t~l

f(eIJ)D[jU-J) + ... +f(e'!,)D'!,_AI-J)+ ... J~I~J+l

f(eZ)D~(t-N) + ... N~I~N+l
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Scanning these equations vertically rather than horizontally, we observe
that in SN[f](t)

coefficient f(eZ) = SON(t)

coefficientf(eJ) = SJ~N, N(t)

coefficient f(eJ+ N) = SJ, N(t).

Therefore we have the following proposition.

COROLLARY 4.4.2. SAfJ(t) is a polynomial spline.

Locally the approximation SN[f](t) is given by SJN[f](t). Thus global
properties of SJN[f](t) are local properties of SN[f] (t). But the local
approximations SJN[fJ(t) are essentially identical to the polynomial
approximations D N [ g] (t) as we can see from the following lemma.

LEMMA 4.4.3. Let fit) = f(t + J). Then

SJN[f](t) = DN[fJ](t - J)

Proof By definition

J~t~J+1.

SJN[f](t) = Lf(eJ+K) Dfc(t - J)
K

=LfAefc) Dfc(t - J)
K

Q.E.D.

Therefore all the standard global properties of the polynomial
approximations DN[ g ](t) are local properties of the spline approximations
SN[f](t). In particular, we have the following results.

PROPOSITION 4.4.4. SIN is the identity on linear functions.

Proof This result is an immediate consequence of Proposition 3.1.3 and
Lemma 4.4.3. It also follows directly from the definition of SJN[f],
Proposition 2.1.1, and Corollary 2.5.7.

PROPOSITION 4.4.5. graph(SIN[f]) f; convex hull (graph f)·

Proof This result is an immediate consequence of Proposition 3.1.5 and
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Lemma 4.4.3. It also follows directly from the definition of SJN[f],
Proposition 2.1.1, and Corollary 2.5.7.

PROPOSITION 4.4.6 (Symmetry). Let J(t) = f(2J +1- t), Then

SJN[J](t) = SJN[f](t).

Proof This result is an immediate consequence of Lemmas 3.2.1 and
4.4.3.

PROPOSITION 4.4.7 (Recursion). For J ~ r~ J + 1 and 0 ~ K + L ~ N,
define

P~+K[f](r) = f(e'J+K)

P;+K[f](r) = f%~L(r - J) P;;k[f](r) + s%~ L(r - J) P;;k+ 1 [f](r).

Then SJN[f](r) = P'J[f](r).

Proof This result is an immediate consequence of Proposition 3.3.3 and
Lemma 4.4.3.

COROLLARY 4.4.8 (Recursion). For J ~ r~ J + 1 and L ~ [- J ~ N,
define

Q~[f](r) = f(eIj)

Q}[f](r) =f7~-f~ L(r - J) Q}-=-l [f](r) + s7_-}_ L(r - J) Qf- 1 [f](r).

Then SJN[f](r) = Q'J+ N[f](r).

Proof By construction Qf[f](r) = Pf-L[f](r). Therefore this result is
an immediate consequence of Proposition 4.4.7.

PROPOSITION 4.4.9 (Uniqueness).

for O~K~N.

Proof This result is an immediate consequence of the definition of
SJN[f] and Proposition 2.5.13.

PROPOSITION 4.4.10 (Uniqueness).

iff g(e%) = h(e%) for every integer K.

Proof This result is an immediate consequence of Propositions 4.3.3
and 4.4.1.
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Finally Conjecture 3.5.3 concerning the variation diminishing property
for the approximations DA g] suggests the following conjectures for the
approximations SJN[f], SAil

Conjecture 4.4.11. For all pOSItlve finite values of aI' the linear
functionals SJN[f] are variation diminishing in the interval (J, J + 1).

Conjecture 4.4.12. For all positive finite values of aj, the linear
functionals SAl] are variation diminishing in any interval.

TABLE I

1. Polynomial

2. Discrete Probability Distribution
a. DZ(t)?O O~I~I

b. IDZ(I)=I
k

3. A Priori Probability

SN(I)=I N=I

=1/2 N>I

4. Expectation

N N+II KDZ(t)=I+-
2

-
K=O

5. Symmetry

DZ(t) = DZ_ K (1- I)

6. Explicit Formulas

N _ (1~I+Kal)

a. Do(t)- TI (I +K+2Ka,)

N -TI (I+Ka,)
b. DN(I)- (I+K+2Ka,)

7. Recursion Formula

(K + 1- 1)+Na, DN(I)
(I+N)+2Na, K

(I+N+ l-K)+Na, DN (I)
+ (I +N)+2Na, 1<-1

8. Limits

Lim DZ(t) = Linear Polynomial

1. Polynomial Spline

2. Continuous Probability Distribution
a. SON(I)?O

b. LN+' SON(I)dl=1

3. A Priori Probability

4. Expectation

fN+' N+l
o ISON(I)dl=-2-

5. Symmetry

SaN(1) = SON(N +1- I)

6. Explicit Formulas

(I+Ka,)
a. SON(t)=TI(I+K+2Ka,) O~I~I

b ( )
_TI(N+I-I+Ka,)

. SaN I ~ (I+K+2Ka,) N~I~N+l

7. Recursion Formula

(I-J)+Na,
(I+N)+2Na, SJN(t)

(N + 2 + J - I) + Na,
+ (l+N)+2Na, SJ+'.N(t)

8. Limits

Lim SON( I) = Linear Spline

9. Law of Signs

Strong Law of Signs
in the Interval (0, I)?

10. Linear Independence

9. Law of Signs

Weak Law of Signs
in any Interval?

10. Linear Independence
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By Lemma 4.4.3 and Proposition 3.5.1 for az = 1+ a j

Conjecture 4.4.11 -= Conjecture 3.5.3 -= Conjecture 2.6.1

and by Propositions 3.5.1 and 4.4.1

Conjecture 4.4.12 -= Conjecture 4.3.1.

Moreover since SN[f](t) = SJN[f](t) for J ~ t ~ J + 1

Conjecture 4.4.12 => Conjecture 4.4.11.
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Thus Conjecture 4.4.12 is the strongest of our conjectures concerning the
variation diminishing property. Now the variation diminishing property is
known to be valid for the normalized uniform B-spline basis functions
[12]; thus Conjecture 4.4.12 is valid when a j = 0, az = 1. We believe that
Conjecture 4.4.12 (the variation diminishing property) is valid for all of our
spline approximations-that is, for all values of a j-but like Conjec­
ture 4.3.1 (the Weak Law of Signs) we know of no proof, probabilistic or
otherwise, for this general conjecture.

4.5 Summary

In Tables I and II we collect, compare, and contrast our results first for
the functions D~(t) and SJN(t) and second for the approximations
DI\f[gJ(t) and SN[fJ(t).

TABLE II

1. Polynomial Approximation

2. Linear Functions

DN[L] =L

3. Convex Hull Property

grapheDN[gJ) S; convex hill (graph g)

4. Symmetry [g(t) = g(1 - t) J
D N[gJ(t) = DN[gJ(t)

5. Recursion

DN[g](r) = P~[gJ(r)

6. Uniqueness

DN[g] =DN[h] iff

g(e~)=h(e~) 0,,;;, K,,;;, N

7. Variation Diminishing

D N[ g] is Variation Diminishing
in the Interval (0, 1)?

1. Spline Approximation

2. Linear Functions

SN[L] =L

3. Convex Hull Property

graph(SN[f]) S; convex hull (graph f)

4. Symmetry [f(t) = f(U + 1- t)]

SJN[f](t) = SJN(f)(t)

5. Recursion

SJNU](r) = QJ+NU](r)

6. Uniqueness

SN[g](t)=SAh](t) iff

g(e~) = h(e~) for all K.

7. Variation Diminishing

SNU] is Variation
Diminishing in Any Interval?
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5. B-SPLINES

Let Xo< Xl < ... < XN+ 1 be a sequence of increasing, evenly spaced
values along the t-axis. A function B(t) is said to be the normalized
uniform B-spline basis function of degree N, order N + I, for the knot vec­
tor (xo, ..., x N+ d iff there are N + 1 degree N polynomials bo(t), ..., bN(t)
such that

and the polynomials bo(t), ..., bN(t) satisfy the following 4 conditions:

1. b&p)(xo) =° p =0, 1, , N - 1

2. b~L(XK+d =b~)(xK+d p=O, 1, , N-1

3. b~)(XN+d=O p=0,1, ,N-1

4. Lk 1/L1x J~~+l bK(t) dt= 1 (Normalization).

Thus a B-spline is a polynomial spline that has the maximum possible
differentiability at the knots without collapsing 2 adjacent segments into a
single polynomial.

To construct the normalized, uniform, degree N, B-spline basis function
B(t) for an arbitrary evenly spaced knot vector (xo, ..., xN+d, we need only
construct the normalized, uniform, degree N, B-spline basis function BON(t)
for the canonical knot vector (0, 1, ..., N + 1). Indeed it is easy to verify that
in general

(
t - xo)B(t)=BoN ~ .

We shall now use an urn model to construct BON(t).

5.1 An Urn Model for B-Splines

Consider an urn initially containing w white balls and b black balls. One
ball at a time is drawn at random from the urn and its color is inspected. It
is then returned to the urn and w+ b balls of the opposite color are added
to the urn.

This urn model is just the special case of Friedman's urn model for
which al = 0, a2 = 1. Moreover, it is the simplest spline model (a1= 0). For
this special urn model we shall adopt the notation

BZ:(t) = DZ:(t)

BJN(t) = SJN(t).
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By Proposition 4.2.4 the functions BJN(t) satisfy the Cox-de Boor recur­
sion formula

(t - J) (N + 2 + J - t)
B J,N+l(t)= (1 +N)BJN(t)+ (I+N) BJ+I,N(t).

Therefore it follows immediately, though somewhat obliquely, that the
functions B IN(t) are the normalized uniform B-spline basis functions of
degree N, order N + 1, for the knot vectors (J, ..., J -+- N +1). We shaH now
give a simpler more direct proof of this fact based on the simpler more
primitive recursion formula

B N+1(t)=(K+l-t) B N(t)+(t+N+I-K) B N (t)
K (N+l) K (N+l) K~l

of Proposition 4.2.2.

LEMMA 5.1.1.

( I)N-K (N)
B!J:(t) = - N! K tN+ ....

Proof By induction on N. Certainly this result is true for N = 1.
Moreover by the recursion formula and the inductive hypothesis

BN+l( )=(K+l-t) B N() (t+N+I-K) B N ()
K t (N+l) K t + (N+l) K_I t

( _1)N + 1- K[(N\ ( N )J N+ 1

= (N+l)! K)+ K-l t + ...

=(_I)N+l-K(N+l) N+I ...
(N + I)! K t + .

COROLLARY 5.1.2.

dNB!J: = (_I)N-K (N).
dt N K

Q.E.D.

PROPOSITION 5.1.3. The functions B~(t), ..., BZ(t) are degree N
polynomials, and they satisfy the following 4 conditions:
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dPBN
K-l

dtP 1,=0

4. 1:L1

BZ(t) dt = 1.

p=o, 1, ..., N-l

p = 0, 1, ..., N - 1

p = 0,1, ..., N-l

Proof When p = 0, parts 1, 2, 3 follow from Proposition 4.1.1. When
p #- 0, we proceed by induction on N.

1. By the recursion formula

BZ~1(t) = (N~ 1) BZ(t)·

Therefore by Leibniz's Rule,

Hence by the inductive hypothesis

dPBZ~~

dtP 1'=0
p= 1, ..., N.

3. Again by the recursion formula

BN+1(t)= (l-t) BN(t)
o (N + 1) 0 .

Therefore by Leibniz's Rule,

-p dP-1Bt + (1- t) dPBt
(N + 1) dt P- 1 (N + 1) dt P .

Hence by the inductive hypothesis

dPBt+ 1

dtP 1,= 1
p= 1, ..., N.
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2. Again by the recursion formula

BN + 1( ) = (1 - t + K) BN () (t + N + 1- K) BN ().

K t (N+l) K t + (N+l) K-l t

Therefore by Leibniz's Rule,

Hence at t = 1

dPB
N

+
1

P [dP-
1

]
-d....::.tK~P-lt~l=(N+l) -dt-p--1 [B%_l(t)-B%(t)]lt~l

+ (N ~ 1) [:;P [(N +2- K) B%_l(t) + KB%(t)]!t=

Similarly for K - 1 and t = 0
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Therefore comparing term by term, it follows immediately from the induc­
tive hypothesis that

dPBN + 1
K-l

dt P It~O
P= 1, ..., N-1.

Moreover, to prove that this result is also true for p = N, we need only
show that
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But by Corollary 5.1.2.

Therefore

RONALD N. GOLDMAN

dNB% = (_I)N-K (N).
dtN K)

= (_I)N-K+l(N +2-K) (K~ 1) +(-I)N-KK(~

= (_l)N+I-K (K~ I) [(N +2 -K)- (N + l-K)]

=(_l)N+l-K( N ).
K-I

Similarly

=(-I t -K+2(N+2-K)( N )+(_l)N-K+IK ( N )
K-2 K-l

= ( _ l)N + 1 - K ( N ) [ _ (K - 1) +K]
K-l

=(_l)N+I-K( N )
K-l

so the result is true for p = N.

4. This is easy since by Proposition 2.1.1

L( D%(t) dt= (L D%(t) dt

= (dt

=1. Q.E.D.
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COROLLARY 5.1.4. The spline BON(t) is the normalized uniform B-spline
basis function for the canonical knot vector (0, 1, ..., N + 1).

Proof Let bK( t) = DZ _ K(t - K). Then by construction

K~t~K+1.

We must show that the polynomials bK( t) satisfy the 4 conditions which
define the B-spline basis function for the knot vector (0, 1, ..., N + 1). Now
by Proposition 5.1.3 for p = 0, 1, ..., N - 1

1. b&p)(O) =dPDZ =°
dt P It~O

dPD N
2. bK(P+) l(K+ 1)= N-K-l

dtP It~o

dPDZ_ K
dt P It~ 1

=bY')(K+ 1)

dPD N
3 b~)(N+1)=-_o =0
. dtP It~ 1

f
K+l fK+l

4. L bk(t)dt=L DZ_K(t-K)dt
KKK K

=I rDZ_K(u) du
K 0

=1. Q.E.D.

COROLLARY 5.1.5. The spline BJN(t) is the normalized uniform B-spline
basis function for the knot vector (J, ..., J +N + 1).

Proof This result is an immediate consequence of Coronary 5.1.4 since
by construction

We can also use the recursion formula to derive explicit expressions for
BZ(t), Borit).

(
N+l)PROPOSITION 5.1.6. BZ(t) = liN! 'L:I,:l( _1)J J (t+N-K-J)N.
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Proof By induction on N. For N = 1, we get

Bb(t)=(t+l)-2t=l-t

BHt)= t

as required. Now by the recursion formula and the inductive hypothesis

BN+ 1(t)=(I-t+K) BN(t)+(t+N+I-K) BN (t)
K (N+l) K (N+l) K-l

1 N+I-K (N+l)
(N+l)! J~l (_I)J-l J-l

x (t + N + 1 - K - J)N(1 - t + K)

1 N+I-K (N+l)
+(N+l)! J~O (_I)J J

x (t +N + 1- K - J)N(t +N + 1- K)

1 N+I-K
(N+l)! J~O (-I)J(t+N+I-K-J)NF(t)

(N + I)!
F(t)= '( 2- )' [(N+2-J)(t+N+I-K)-J(1-t+K)]

J. N+ J.

(N + I)!
J!(N+2-J)! [(N + 2)(t +N +1- K -J)].

Thus

(
N+2)F(t)= J (t+N+I-K-J)

so

as required.

COROLLARY 5.1.7.

1~ K(N+ 1) NBON(t)=, L, (-1) J (t-J)+
N'J~O

=0

O~t~N+l

otherwise.

Q.E.D.
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Proof Let 0 ~ K ~ t ~ K + 1~ N + 1. Then by Proposition 5.1.6
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Q.E.D.

We close this section with a result relating the limits of urn distributions
to the values of the normalized uniform B-spline basis functions at the
knots.

PROPOSITION 5.1.8. If N> 1, then

Lim DZ(Ol, a2 , t)=BO,N_l(N-K).
a2- co

Proof By Proposition 2.7.5 if N> 1, then

Lim DZ(aj, a2 , t)=DZ-1(O, 1, 1)
a2 --+ 00

=BZ- 1(1)

=Bo N_l(N-K). Q.E.D.

By Proposition 2.7.5 as a2 approaches infinity the urn distributions
approach constant values and by Proposition 5.1.8 these values are just the
values at the knots of the normalized uniform B-spline basis functions.

5.2 Derivatives Revisited

In Proposition 5.1.3 we proved that the functions B~(t), ..., BZ(t) can be
joined together smoothly up to order N - 1. However, this proof provides
little or no insight into why the particular spline model 01 = 0, a2 = 1 is the
correct model for B-splines rather than one of the other spline models.
To rectify this situation, we now provide an alternate proof of
Proposition 5.1.3 based on Propositions 2.8.5. and 4.1.1.

PROPOSITION 5.1.3 (Revisited). The functions B~(t), ..., BZ(t) are degree
N polynomials, and they satisfy the following 4 conditions:
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dPBN
1. __N =0

dt P 11=0
dPB~

2.
dt P 11~1

dPBN

3. __0 =0
dt P 11= 1

4. L ( B~(t) dt = 1.

p = 0, 1, ..., N - 1

.p=0,1, ...,N-1

p = 0, 1, ..., N - 1

Proof The main facts are these: by Proposition 4.1.1 any urn model for
which a2 = 1 + a1 satisfies

On the other hand if a 1 = 0, then by Proposition 2.8.5 we know the
derivatives of the functions D~(t) in terms of the functions D~ -l(t). Indeed
if a 1 = 0, we have

Now if a2= 1 + a 1 and a 1= 0, then (*) and (**) together imply

p = 0, 1, ..., N - 1.

But this is exactly what we needed to prove for part 2. Moreover parts 1, 3
follow easily since by Proposition 2.3.2 and (**) we have

p = 0, 1, ..., N - 1

p = 0, 1, ..., N - 1.

Finally part 4 is true for every urn model since by Proposition 2.2.1

Q.E.D.
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The fact that we have formulas for the derivatives of nZ(t) when a l =0,
a2 ¥- 1 is not an accident. Indeed these urn models actually generate certain
special non-uniform B-splines [8]

We close this section by noting that we can also use the results of
Section 2.8 to calculate the derivatives of the B-splines B IN(t) in terms of
lower order B-splines. Indeed we have the following results.

PROPOSITION 5.2.1. dBJN/dt = BJ. N-l(t) - BJ+I. N-l(t).

Proof This result follows directly from Corollary 2.8.7.

COROLLARY 5.2.2. dPBJN/dtP='L(-I)i(f)BJ+i,N_p(t).

Proof This result follows easily from Proposition 5.2.1 by induction
on p.

5.3 Summary

Since the normalized uniform B-spline basis functions can be generated
from an urn model, many of the special geometric features of these splines
are simply reflections of the distinctive stochastic characteristics of the urn
model. Thus symmetry, recursion, and normalization can all be derived by
simple, discrete, counting arguments. In particular, the recursion formula

BN +l(t)=(K+l-t) BN (t)+(t+N+I--K) BN (t)
K (N+I) K (N+1) K-I

is the Cox-de Boor recursion formula in its simplest, most primitive form.
Thus the standard Cox-de Boor recursion formula

is just a special case of the general recursion formula which is a charac­
teristic feature of all Friedman urn models (see Section 2.4).

We summarize our results for B-splines in Table III. Except for items 2,
3, 8c, all of these properties follow from Table I in Section 4.5 by setting
a 1 = O. Item 2 is, of course, just Proposition 5.1.3 and Corollary 5.1.4; item
3 is just Corollaries 2.8.7 and 5.2.2; and item 8c is just Proposition 5.1.6 and
Corollary 5.1.7.

All the results in Table II of Section 4.5 are also valid for B-splines, but
since all these results are independent of the value of a l we shall not repeat
them here.

640/54/1-5
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TABLE III

B;;(t)

p = 0, 1, ..., N - 1

a. BON(t)";. 0

b.lN+ I BON(t) dt= I

5. A Priori Probability

1. Polynomial Spline

2. Differentiability Conditions

dPBoN dPBoN
~I'~K- =~L_K+

3. Derivatives

dPBJN " ,(p)
~=L..(-1) i BJ+"N-p(t)

4. Continuous Probability Distribution

p=O,I, ...,N-l

K

5. A Priori Probability

SN(t)=t N= 1

= 1/2 N> 1

1. Polynomial

2. Differentiability Conditions

dPB;; dPB;;_,

dtP l,~, =----;TtPL~o

3. Derivatives

dPB;; =" (-I)'+P (p) BN-f(t)
dtP i...J i K-f

4. Discrete Probability Distribution

a. B;;(t);",O O~t~1

6. Expectation

N N-l
L: KB;;(t)=t+-

2
-

K=O

7. Symmetry

B;;(t)=BZ_ K (I-t)

8. Explicit Formulas

(1 t)N
a. B{j(t) =---;:jf

6. Expectation

fN+' N+l
o tBON(t)dt=-2-

7. Symmetry

BON(t) = BON(N + I - t)

8. Explicit Formulas

O~t~1

1 N (N+l)c. BON(t) = Ni J~O (_I)J J (t-J)~

9. Recursion Formula

tN

b. BZ(t) = Ni

1 N-K (N+l)
c. B;;(t) = Ni J~O (-I)" J (t+N-K-J)N

9. Recursion Formula

(N+ 1- t)"
b. BON(t) N! N~t~N+1

BN+ 1ft) = (K + 1- t) BN(t)
K (N+l) K

(t + N + 1- K) BN ( )
+ (N+l) K_I t

10. Law of Signs

Strong Law of Signs
in theInterval (0, 1)[12J

11. Polynomial Basis

(N+2+J-t)
+ (N+1) BJ+I.N(t)

10. Law of Signs

Weak Law of Signs
in any Interval [12].

II. Spline Basis
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Finally we note that there also exist urn models which generate non­
uniform B-splines and B-splines with multiple knots, but these are a subject
for another paper [8].

6. CONCLUSIONS AND QUESTIONS

Probability theory and approximation theory are intimately related.
Many of the classical geometric properties of standard approximation
techniques are just reflections of the simple stochastic properties of
corresponding urn models. Thus rather than derive these geometric proper­
ties from explicit algebraic expressions, we have tried, whenever possible, to
give probabilistic arguments. These arguments are simpler, more general,
more natural, and more elegant. By adopting this high-level perspective, we
have realized a deeper level of unity and understanding.

Still, many questions remain. Are both Laws of Signs indeed valid for all
Friedman urn models? Do there exist simple probabilistic proofs for these
Laws? It is not easy to see any obvious connection between probability
theory and the Laws of Signs. Yet after all we have said and done, it is
hard to believe that no link exists.

The Laws of Signs imply the variation diminishing property. Are all the
approximation schemes derived from Friedman's urn model variation
diminishing? Do the spline distributions generated from urn models an
satisfy the Weak Law of Signs? Are the corresponding approximation
schemes also always variation diminishing?

Spline distributions generalize the notion of normalized, uniform,
B-spline functions. Do these spline distributions have any practical
applications?

Differential conditions still elude direct probabilistic interpretations. Is
there any insight that probability theory can provide about these critical
conditions?

From Friedman's urn model we have singled out three fundamental
sequences: the Polya-Eggenberger models (a z = 0) whose most prominent
representative is the binomial distribution (a j = 0), the spline models
(az = 1+ad whose most important representatives are the uniform
B-splines (a j =0), and certain very special non-uniform B-splines (aj =0)
whose most distinguished representatives are again the uniform B-splines
(az = 1). Are there any other interesting useful sequences within Friedman's
urn model? Do they also have applications in approximation theory?

Friedman's urn model can be generalized in two ways: by adding dif­
ferent number of bans of each color after each distinct trial or by consider­
ing urns containing bans of three or more distinct colors. The first method
can be used to generate many new types of splines including all univariate



66 RONALD N. GOLDMAN

non-uniform B-splines [8J; the second method may lead to novel types of
splines in two or more variables. In relation to splines neither of these
techniques has been explored in any detail. Exactly what splines 00 they
generate? What are their applications to approximation theory? Is there
any relationship between urns with multiple colors and multivariate
B-splines?

Other discrete probabilistic models-for example, the Poisson
models-are important in probability theory. Can these models also be
applied to solve problems in approximation theory?

Continuous probability distributions are barely touched upon in this
paper. What precisely is the role of continuous distributions in
approximation theory?

Finally, Laplace and Fourier transforms play a fundamental role in
probability theory. Do they also have a central role in approximation
theory?
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